Limit cycles of a cubic Kolmogorov system
نویسندگان
چکیده
منابع مشابه
Limit Cycles in a Kolmogorov-type Model
In this paper, a Kolmogorov-type model, which includes the Gause-type model (Kuang and Freedman, 1988), the general predator-prey model (Huang 1988, Huang and Merrill 1989), and many other specialized models, is studied. The stability of equilibrium points, the existence and uniqueness of limit cycles in the model are proved.
متن کاملExistence Conditions of Thirteen Limit Cycles in a cubic System
As we know, the second part of the Hilbert problem is to find the maximal number and relative locations of limit cycles of polynomial systems of degree n. Let H(n) denote this number, which is called the Hilbert number. Then the problem of finding H(n) is divided into two parts: find an upper and lower bounds of it. For the upper bound there are important works of Écalle [1990] and IIyashenko a...
متن کاملBifurcation of Limit Cycles in a Cubic Hamiltonian System with Some Special Perturbed Terms
This paper presents an analysis on the bifurcation of limit cycles for a cubic Hamiltonian system with quintic perturbed terms using both qualitative analysis and numerical exploration. The perturbed terms considered here is in the form of R(x, y, λ) = S(x, y, λ) = mx+ny+kxy−λ, where m, n, k, and λ are all variable. The investigation is based on detection functions which are particularly effect...
متن کاملBifurcation of Limit Cycles in a Cubic Hamiltonian System with Perturbed Terms
Bifurcation of limit cycles in a cubic Hamiltonian system with quintic perturbed terms is investigated using both qualitative analysis and numerical exploration. The investigation is based on detection functions which are particularly effective for the perturbed cubic Hamiltonian system. The study reveals firstly that there are at most 15 limit cycles in the cubic Hamiltonian system with pertur...
متن کاملOn the Number and Distribution of Limit Cycles in a cubic System
A part of the well-known Hilbert’s 16th problem is to consider the existence of maximal number of limit cycles for a general planar polynomial system. In general, this is a very difficult question and it has been studied by many mathematicians (see e.g. [Bautin, 1952; Zhang et al., 2004]). By [Ye, 1986] we know that there exists a quadratic system having four limit cycles. [Bautin, 1952] proved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1996
ISSN: 0893-9659
DOI: 10.1016/0893-9659(95)00095-x